

APMI-2.5G-W

OVERVIEW

APMI-2.5G-W is the InGaAs avalanche photodiode with a low-noise transimpedance amplifier with auto gain control coupled to an optical fiber and packaged into a hermetic case

MAIN FEATURES

- Operation wavelength 1260 1640 nm
- Data rate: 2.5 Gbps
- Sensitivity: -35 dBm
- Package types: coaxial with or without bracket
- Low back reflection, return loss RL = 45 dB

APPLICATIONS

- · Optical fiber communication systems
- LIDARs
- · Spectroscopy, fluorescence, biomedical applications

ORDERING INFORMATION

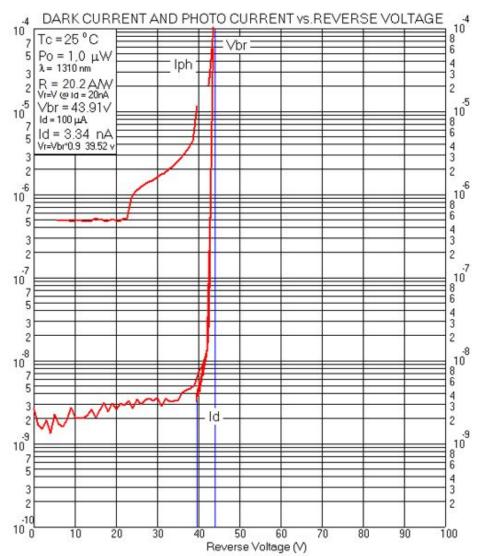
APMI-2.5G-W-<u>X</u>-<u>X</u>-10-<u>X</u>-<u>X</u>-X Optical matching R45: back reflection -45 dB (SM1 and SM3 fiber) R30: back reflection -30 dB (MM5 fiber) RM: optical matching, +5% larger responsivity Case type U: compact coaxial B: compact coaxial with double-sided bracket Fiber type SMT: SM, Corning Titania-Clad, furcation tubing Ø0.9 mm, ultrasmall bending radius 2.5 mm SM1: SM, G.657.A1, Corning SMF-28 Ultra, furcation tubing Ø0.9 mm SM3: SM, G.657.B3, Corning ClearCurve ZBL, furcation tubing Ø0.9 mm MM5: MM, 50/125, OM2 Other type: on request Connector type FA: FC/APC (SM1,SM3, SMT) FU: FC/UPC (SM1, SM3, SMT, MM5, MM6) SA: SC/APC (SM1) SU: SC/UPC (SM1) N: no connector Other type: on request

APMI-2.5G-W

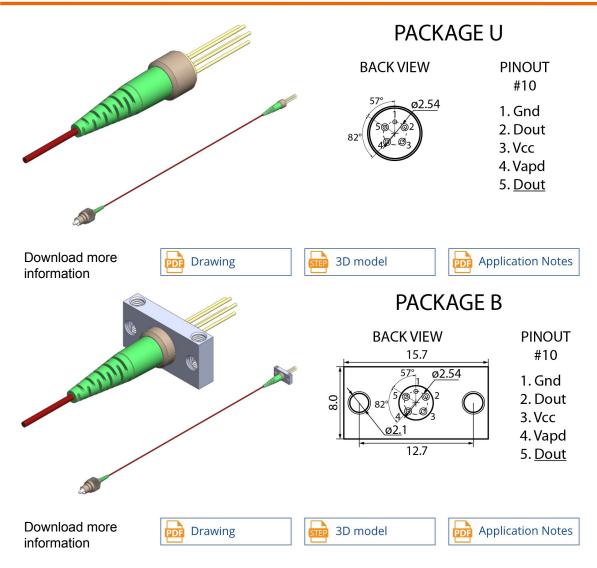
ABSOLUTE MAXIMUM RATINGS

Parameter	Value	Unit	Conditions	
TIA supply voltage	V_{cc}	4.5	V	
APD supply voltage	V_{PD}	V _{br}		
Reverse current	Ir	2	mA	
Operating temperature	T _{op}	-40 ÷ +85	°C	
Storage temperature	T _{stg}	-40 ÷ +85	°C	
Soldering temperature	T _{sold}	260	°C	Max. 5 seconds

ELECTRICAL-OPTICAL CHARACTERISTICS (SM FIBER, λ = 1310 nm, T = 25 °C)


Parameter		Min	Тур	Max	Unit	Test conditions	
Operation wavelength		1260		1640	nm		
TIA supply voltage V _{cc}		3.0	3.3	3.6	V		
		I _{cc}	15	20	24	mA	no loads
Return loss	R30		25	30		dB	MM5
	R45	RL	40	45			SM1, SM3
	RM		20	25			SM1, SM3, MM5
Responsivity @ 0.95V _{BR}	R30		15			A/W	λ = 1310 nm, MM5, V _R =0.95V _{BR}
	R45	R	20				λ = 1310 nm, SM1, SM3, V _R =0.95V _{BR}
	RM		20				$\lambda = 1310 \text{ nm}, \text{SM1}, \text{SM3}, \text{MM5}, \text{V}_{\text{R}} = 0.95 \text{V}_{\text{BR}}$
Breakdown voltage V		V_{BR}	35	46	56	V	$I_d = 10 \ \mu A$
Breakdown voltage temperature coefficient $\Delta V_{BR}/\Delta T$		δ	0.08	0.10	0.12	V/°C	
Bit		ld		10	50	nA	@ 0.9 Vbr
Bit rate		Br		2.5		Gbps	
Low-frequency cut-off fc		fc		30		kHz	
Optical sensitivit	У	P_{\min}		-35	-33.5	dBm	BER = 10 ⁻¹⁰ , BR = 2.5 Gbps, PRBS, ER = 10 dB, λ = 1490 nm
		Vout		140		mVp-p	
Transimpedance		Zt	5.7	7.7	9.0	kΩ	Differential (50 Ω on each output), f = 100 MHz
Output impedance Z0		Z0		50		Ω	
Saturation power Psat		Psat	2			dBm	λ = 1550 nm @ 2.5 Gbps, NRZ, PRBS

PHOTODIODE


APMI-2.5G-W

CHARACTERISTICS (T = 25 °C)

APMI-2.5G-W

PHOTODIODE

APMI-2.5G-W

Characteristics, data, materials and structures specified in this datasheet are subject to change without notice. Please refer to the latest specification before use of the products.

Safety and handling cautions

1. Avoid smashing and burning of the module. Avoid storing and using the module in conditions where water, organic solvents or aggressive acids or bases may contact the module or where there is a possibility of exposure to corrosive gases, explosive gases, dust, salinity or other harsh conditions. The module should be disposed as special industrial waste.

2. Exceeding absolute maximal ratings even for a short time can cause permanent damage of the module.

3. The module is sensitive to and can be broken by ESD (static electricity).

Conflict Minerals Policy Statement

LasersCom LLC achieves business objectives and customer needs with social responsibility. We do not support or contribute to the violence and human rights violations associated with the mining of conflict minerals coming from Conflict Regions according to US "Dodd-Frank Act". When possible, our suppliers' conflict mineral statements are reviewed. We do not directly purchase Conflict Minerals from any source and do not knowingly procure any parts and products containing Conflict Minerals from Conflict Regions.

RoHS Compliance Statement

Restriction of Hazardous Substances (RoHS) directive (Directive 2011/65/EC amended with Directive (EU) 2015/863) is the directive aimed at reducing the harmful environmental impact of waste electrical equipment by restricting the use of known dangerous substances. Based on information received from our supply sources, LasersCom LLC hereby states that the banned substances listed in the RoHS directive are not found in the parts and materials used above the threshold level listed other than exceptions approved by the European Commission.

REACH Compliance Statement

Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) is a European Union regulation 1907/2006/EC that addresses the production and use of chemical substances, and their potential impacts on human health and the environment. Based on information received from our supply sources, LasersCom LLC hereby states compliance of the parts and materials used in manufacturing to REACH regulation. LasersCom LLC does not manufacture or import any substances or preparations as defined under REACH.